ОБЕСПЕЧЕНИЕ АГРАРНОГО ПРОИЗВОДСТВА ОЗОНОВЫМИ СТЕРИЛИЗАТОРАМИ И ДЕЗИНФЕКТОРАМИ Provision of agricultural production by ozone sterilizers and disinfectors

А. С. Лалаян, кандидат физико-математических наук, доцент Уральского государственного аграрного университета (Екатеринбург, ул. Карла Либкнехта, 42)

Аннотация

Проблемы микробиальной и токсикологической безопасности на предприятиях агропромышленного комплекса могут быть успешно решены посредством применения озоновых технологий, являющихся экономичными и экологичными способами решения санитарно-гигиенических задач. Приводится ряд сфер пищевой промышленности и сельского хозяйства, в которых применение озона показало свою высокую эффективность.

Ключевые слова: озонирование, микробиальная безопасность, токсикологическая безопасность, стерилизация, дезинфекция, дезодорация, пищевая промышленность.

Summary

Problems of microbial and toxicological safety at agricultural enterprises can be successfully solved through the use of ozone technologies that are cost-effective and environmentally friendly methods of solving sanitary problems. There are given areas in the food industry and agriculture, where the use of ozone showed its efficiency.

Keywords: ozonation, microbial safety, toxicological safety, sterilization, disinfection, deodorization, food industry.

Проблема обеспечения микробиальной и токсикологической безопасности продукции пищевых и сельскохозяйственных предприятий всегда была весьма актуальной. Для ее решения используются химические, термические и излучательные методы дезинфекции и стерилизации. В настоящее время важнейшую роль играют низкотемпературные методы стерилизации, к которым относится и метод стерилизации озоном. Озон является очень сильным природным дезинфектантом. Применение озоновых технологий основывается на свойстве газообразного озона при определенных концентрациях уничтожать все известные виды микроорганизмов, бактерий и спор, а также либо уничтожать насекомых и грызунов, либо создавать для них дискомфортные условия.

Использование озона на предприятиях пищевой промышленности включает в себя дезинфекцию или стерилизацию используемой воды, обработку пищевых полуфабрикатов, озонирование оборудования и воздуха производственных и складских помещений. При насыщении воздуха озоном в концентрации всего 2 мг/м³ ингибируется активность большинства видов плесневых грибов, гнилостных и болезнетворных микроорганизмов, спор и вирусов, а при концентрациях 8–10 мг/л происходит полное уничтожение всех видов плесени, микроорганизмов, спор и вирусов в течение одного часа.

Рис. 1. Поверхность дыни, покрытая слоем плесени Penicillium glaucum

Рис. 2. Та же поверхность после одного часа обработки озоном в концентрации 8 мг/л

Обеззараживаются воздух, оборудование, пол, стены и потолок производственных помещений и даже труднодоступные для традиционных методов санобработки участки. Озон является наилучшим дезинфектантом, например, для предприятий молочной промышленности: в отличие от других дезинфектантов он не создает вторичного загрязнения. Озоновая дезинфекция не требует последующей дегазации или промывки пищевых продуктов, изделий и оборудования.

1. Пищевая промышленность

Применение озонирования для дезинфекции или стерилизации сухих пищевых субстанций: сухих трав (базилика, укропа, петрушки и т. п.), сухих пищевых смесей (растолченных злаков, картофеля, сухих трав и т. д.) – показывает очень высокую эффективность метода. Например, при озонировании в течение 1 часа сухих трав (или сухих пищевых смесей) при концентрации озона 5 мг/л наблюдается полное уничтожение колоний, при том что начальное количество их в необработанных пищевых субстанциях превышало 100 (эксперимент с посевом на чашках Петри).

Рис. 3. Посев на питательную среду произведен до и после обработки озоном сухих трав

Данные получены по результатам эксплуатации ныне функционирующего озонового комплекса максимальной производительностью 250 г озона в час на заводе «Пиазар» по производству сухих пищевых субстанций и сухих пищевых смесей в Иране.

В случае обработки в течение получаса озонно-воздушной смесью с концентрацией озона 8–10 мг/л ягод черники и вишни при их дальнейшем хранении в герметичной таре не наблюдается никаких признаков порчи, заплесневелости или разложения этих продуктов в течение как минимум двух с половиной лет. Они сохраняют изначальный вкус, цвет и запах.

Рис. 4. Слева черника, не подвергавшаяся воздействию озона, справа — обработанные озоном в течение получаса ягоды черники

Изготовление быстрозамороженных картофельных полуфабрикатов включает следующие этапы: сортировку, мойку, удаление кожицы, нарезку на прямоугольники (7-10 мм) или квадратики $(10 \times 10 \text{ мм})$. Далее следует этап озонирования. Нарезанные ломтики погружают в предварительно озонированную воду и озонируют 3 часа при комнатной температуре при непрерывной подаче озона. В результате озонирования инактивируются окислительные ферменты, под действием которых образуются вещества, обуславливающие темную окраску сырого картофеля, значительно снижается микробиологическая обсемененность. Прошедшие озонирование картофельные полуфабрикаты замораживают при -20 °C и хранят при -18 °C. Замороженные таким способом картофельные полуфабрикаты сохраняют цвет, вкус и консистенцию, присущие свежему картофелю [6].

Обработка в течение 10 минут озонно-воздушной смесью с начальной концентрацией 5 мг/л, поступающей из лабораторного генератора озона производительностью 0,5 г озона в час, содержимого 10 яиц, зараженных сальмонеллами, приводила к полному уничтожению сальмонелл.

Очень эффективно применение метода озонирования в молочной промышленности. При озонировании кисломолочных напитков пониженной вязкости методом барботажа наблюдается улучшение вкусовых характеристик и продлеваются сроки хранения. Так, после обработки 1,5 литров несатурированного кисломолочного напитка озонно-воздушной струей, подаваемой из лабораторного генератора озона производительностью 0,5 г озона в час, методом барботажа в течение 10 минут, даже на пятый день выстаивания в теплом (при комнатной температуре) помещении в открытой емкости не наблюдалось никаких следов порчи, тогда как необработанный напиток начал портиться в аналогичных условиях уже через 16 часов. Использование воздушных озонаторов на аналогичных производствах позволяет весьма эффективно дезинфицировать и дезодорировать производственные помещения, лаборатории, цеха созревания сыров, холодильные и морозильные камеры, склады, хранилища, поверхности технологического оборудования, упаковочную тару, пастеризаторы, ванны и бидоны для молока и сметаны, заквасочники, автомобильные цистерны и т. д. Возможно

использование озона для санации исходного сырья и готовой продукции, ликвидации посторонних запахов (включая застарелые). Так, при обработке озонно-воздушной струей концентрацией озона 5 мг/л методом барботажа в течение 10 минут 3 литров воды сыроваренного завода, подлежащей сбросу в экосистему, наблюдалась полная ее стерилизация. Более того, при выдерживании этой воды в помещении при комнатной температуре в открытой емкости в течение недели не наблюдался рост плесени, тогда как необработанная (контрольная) проба показала наличие на ее поверхности плесени уже через 48 часов. Благодаря полному контакту озона с источниками микробного заражения резко снижается обсемененность микроорганизмами, в т. ч. плесенью, в воздухе и на оборудовании. Благодаря экологическим свойствам озона обработка может проводиться в цехах с открытым технологическим процессом.

Эффективно применение озонирования в деле водоподготовки. При обработке методом барботажа в колонне из нержавеющей стали одной тонны артезианской воды с начальным коли-индексом 10 озонно-воздушной смесью, поступающей из генератора озона производительностью 30 г озона в час в течение 3 минут, коли-индекс воды снижается до уровня менее 3.

При обработке одного литра железосодержащей воды озонно-воздушной смесью, поступающей из лабораторного генератора озона производительностью 0,5 г озона в час в течение 10 минут, наблюдается переход ионов железа в нерастворимую форму с последующим осаждением их. Таким образом, происходит существенное умягчение воды.

Интересным является метод транспортировки растворенного в воде озона к основному резервуару с целью дезинфекции всей массы воды, находящейся в резервуаре (цистернах для хранения воды, бассейнах и т. д.). Суть метода заключается в следующем: вода из основного резервуара подается в колонну озонирования и после насыщения озоном возвращается в основной резервуар через фильтрующую систему. Здесь следует обратить внимание на свойство озона как эффективного коагулянта.

2. Животноводство и птицеводство

Озонирование кормов, предназначенных для употребления скотом в зимнее время, и кормов для птицы заметно снижает их контаминационную обсемененность. Наиболее опасными для человека и животных являются продуценты микотоксинов. Имеющиеся в литературе данные о методах борьбы с этим явлением включают применение различных адсорбентов, добавляемых в рацион животных. Также используются профилактические меры: условия хранения кормов (влажность, температура окружающей среды и т. д.), не допускающие или замедляющие их заплесневелость.

Имеющиеся данные о воздействии озона на плесневые грибки и результаты серии предварительных экспериментов по уничтожению продуцента афлотоксина на поверхности сырых фисташек *Pistacia terebinthus* показали высокую эффективность метода. Фисташки обрабатывались озонно-воздушной смесью концентрацией 5 мг/л, впрыскиваемой в специальную герметичную камеру. После обработки в течение одного часа было зафиксировано снижение активности продуцента микотоксина на более чем 50 %.

Также весьма эффективной с точки зрения дезинфекции, дезинсекции и дератизации является обработка озоном разнопрофильных помещений птицефабрик.

3. Сельское хозяйство

Обработка поверхности семян. Одним из основных путей увеличения урожая сельскохозяйственных культур является защита растений от болезней, в частности от локализующихся на поверхности семян спор. К наиболее вредоносным из них относятся возбудители твердой головни и корневых гнилей. Потери урожая зерновых культур от этих заболеваний могут достигать 20–35 %. Одним из путей решения этой проблемы является использование озона. Результаты лабораторных исследований показывают, что при обработке семян озоном достигается существенное снижение поверхностно-семенной инфекции, а в случае твердой головни – полное элиминирование возбудителя. Кроме того, наблюдаются повышение всхожести, увеличение длины и сырого веса проростков. Зарегистрированное увеличение урожайности для ряда культур (пшеница, ячмень, гречиха) составило от 15 до 30 %. Таким образом, предпосевная обработка семян озоном имеет перед известными способами борьбы с поверхностно-семенной инфекцией зерновых культур ряд преимуществ, связанных с высокой технологичностью, эффективностью действия на возбудителей болезней и экологической безопасностью.

Обработка грибниц. Наибольший вред шампиньонам причиняют клещи из родов Tyrogliphus, Linopodes и др. Полный цикл развития клещей при благоприятных условиях (при температуре 20–25 °C) продолжается 15–17 дней. Компост в стадии инкубации является очень благоприятной субстанцией для развития этих вредителей. Самки клещей откладывают в поверхностные слои грибного субстрата до нескольких сотен яиц, из которых появляются личинки. Затем эти личинки превращаются в так называемых нимф, а нимфы — во взрослых клещей. Личинки клещей наносят существенный вред грибам, повреждая их мицелий, а взрослые особи выгрызают ходы в плодовых телах грибов и уничтожают соединительные ризоморфы. Поврежденные плодовые тела остаются недоразвитыми или погибают. В них интенсивно развиваются бактерии, вызывающие гнилостные процессы. Мерами борьбы с клещами являются санитарная (термическая, паром) обработка помещений и пастеризация субстрата (компоста).

Проведенные в лабораторных условиях многочисленные эксперименты с применением лабораторного генератора озона производительностью 0,5 г озона в час показали, что клещи, помещенные в стеклянную тару, куда впрыскивается озонно-воздушная смесь с концентрацией озона 5 мг/л, гарантированно погибают через 5 минут.

Большие перспективы открывает использование технологий озонирования в сельском хозяйстве при хранении зерновых, картофеля, фруктов и овощей. При хранении зерна, картофеля, бахчевых культур, овощей и фруктов озонирование складских помещений может обеспечить значительное снижение потерь продовольственных продуктов от гниения, плесени и т. п.

На продовольственных складах источниками контаминации являются также насекомые и грызуны. На практике обеспечить сохранность продовольствия от вредителей невозможно без дезинфекции, дезинсекции и дератизации. Преимуществом озона является его способность уничтожать не только микроорганизмы, грибки и споры, но и насекомых. Мелкие млекопитающие – мыши и крысы – покидают помещения, обрабатываемые озоном.

4. Экологическая сфера: обработка (дезинфекция и дезодорация) сточных вод

Окислительные способности озона существенно превосходят таковые у чистого хлора. Обеззараживание сточных вод озонированием является наиболее чистым и безопасным методом, так как остаточный озон после завершения процесса обеззараживания трансформируется в кислород.

Озон — это аллотропная форма кислорода, к двухатомной молекуле которого добавляется еще один атом кислорода. В современных озонаторах этот процесс достигается изначальной диссоциацией молекул кислорода на атомы под воздействием электрического разряда и дальнейшей ассоциацией атомарного кислорода частично в озон. Процесс обеззараживания

сточных вод озоном заключается в том, что в поданную в контактную камеру воду вводится (методом барботажа) озонно-воздушная смесь. Система должна обеспечивать эффективное диспергирование озоно-воздушной смеси, так как именно от контакта воды с озонновоздушной смесью зависит эффективность обеззараживания сточных вод. Растворимость озона в воде значительно превосходит растворимость кислорода. За время контакта озона с водой – от 5 до 20 минут – происходят растворение его в воде и воздействие на микроорганизмы, в ней находящиеся. После завершения реакции окисления озон трансформируется в кислород. Здесь следует сказать также и о свойствах озона как коагулянта, благодаря которым в обрабатываемых водах образуются нерастворимые «глобулы», в дальнейшем задерживаемые фильтрационной системой комплекса очистки воды. Основной проблемой обеззараживания сточных вод озонированием считается скорость его распада в воде, которая исключает влияние озона на физико-химические свойства и органолептические качества воды. За счет деструкции озона исключается наличие в воде остаточного озона в течение длительного времени, которое предохраняло бы воду от повторного заражения. В некоторых случаях из-за высокой скорости распада озон не успевает до конца окислить некоторые органические соединения, что может привести к увеличению бактериальной деятельности, поэтому необходимо тщательно подбирать все параметры озонирования: производительность генератора озона, скорость и количество поступающей в колонну озонирования воды.

Выводы

Широкое внедрение озоновых технологий в различные сферы аграрного производства может оказаться весьма эффективным с экономической и экологической точек зрения, поскольку оно:

- 1) будет способствовать продлению сроков хранения продукции;
- 2) сведет к минимуму образование токсинов или полностью воспрепятствует ему;
- 3) сведет к минимуму вред, наносимый грызунами и насекомыми при хранении готовой продукции или полуфабрикатов;
 - 4) повысит урожайность ряда культур;
- 5) позволит обеззараживать и умягчать используемую в производстве пищевых продуктов воду;
- 6) позволит весьма эффективно и с минимальными затратами дезинфицировать оборудование и помещения пищевых производств;
- 7) позволит решить ряд экологических задач, связанных со сбросами в экосистему отходов производств.

Библиографический список

- 1. *Кожинов В. Ф., Кожинов И. В.* Озонирование воды. М., 1974.
- 2. *Колодязная В. С., Супонина Т. А. [и др.]*. Применение озона при холодильном хранении пищевых продуктов. Холодильная обработка и хранение продуктов // Труды ЛТИХП. 1974. Вып. 2.
- 3. *Литвинчук А. А., Хилько Е. Б., Рачковская А. И., Троцкая Т. П.* Дезинсекция методом озонирования в мукомольном производстве // Озон и другие экологически чистые окислители. Наука и технологии: материалы 26-го всероссийского семинара. М.: МГУ ХФ, 2003.
 - 4. *Орлов В. А.* Озонирование воды. М., 1984.

- 5. *Рачковская А. И.* Новый метод обеззараживания труднодоступного оборудования в кондитерском производстве // Хлебопек. 2005. № 5 (16).
- 6. Способ обработки картофеля : патент РА AM20120005, A2.3L.1.1/00.10/09/2012 / Снапян Γ . Γ ., Мкртчян Γ . A., Лалаян A. C., Костанян K. B., Снапян M. Γ .
- 7. *Троцкая Т. П., Литвинчук А. А., Богдан М. В.* Озоно-воздушные технологии в процессах хранения плодоовощного сырья // Материалы научно-практической конференции. Самохваловичи, 2002.
- 8. *Троцкая Т. П.* Экологически чистый способ предпосевной обработки семян зерновых культур озонированным воздухом // Материалы международной научно-практической конференции. М., 1999.